How Deep Learning Increases Video Viewability

Video viewability is a top priority for video publishers who are under pressure to verify that their audience is actually watching advertisers’ content. In a previous post How Deep Learning Video Sequence Drives Profits, we demonstrated why image sequences draw consumer attention. Advanced technologies such as Deep Learning are increasing video Viewability through identifying and learning which images make people stick to content. This content intelligence is the foundation for advancing video machine learning and improving overall video performance. In this post, we will explore some challenges in viewability and how deep learning is boosting video watch rates.

Side by Side Default Thumbnail vs. KRAKEN Rotation powered by Deep Learning

 

In the two examples above, which one do you think would increase viability? The video on the right has images selected by deep learning and automatically adjusted image rotation. It delivered a whopping 120% more plays than the static image on the left, which was chosen by an editor. Higher viewability is validated by the fact that the same video with the same placement at the same time achieved a greater audience take rate with images chosen by machine learning.

This boost in video performance was powered by KRAKEN, a video machine learning technology. KRAKEN is designed to understand what visuals (contained in the video) consumers are more likely to engage with based on learning. More views equals more revenue.

Measurement

Video Deep Learning Machine Learning A_B Testing KRAKEN InfiniGraphA/B testing is required when looking to verify optimization. For decades, video players have been void of any intelligence. They have been a ‘dumb’ interface for displaying a video stream to consumers. The fact was that without intelligence, the video player was just bit-pipe. Very basic measurements were taken, such as Video Starts, Completes, Views as well as some advanced metrics such as how long a user watched, etc. A new thinking was required to be more responsive to the audience and take advantage of what images people would reacted on. Increasing reaction increase viewability.

So how does KRAKEN do its A/B Testing? The goal was to create the most accurate measurement foundation possible to test for visuals consumers are more likely to engage with and measure the crowds response to one image vs another. KRAKEN implemented 90/10 splitting of traffic whereby 10% of traffic shows the default thumbnail image (the control) and 90% of traffic to the KRAKEN selected images. It is very simple to see why testing video performance through A/B testing is possible. Now that HTML5 is the standard and Adobe Flash has been deprecated, the ability to run A/B testing within video players has been furthered simplified.

User experience

Mobile Video Sponsor Content In FeedMaking sure a video is “in view” is one thing, but the experience has a great deal to do with legitimate viewability. A bigger question is: Will a person engage and really want to watch? People have a choice to watch content. It’s not that complex. If the content is bad, why would anyone want to watch it? If the site is known for identifying or creating great content then that box can be checked off.

Understanding what visual(s) makes people tick and get engaged is a key factor to increase viewability. Consumers have affinities to visuals and those affinities are core to them taking action. Tap into the right images and you will enhance the first impression and consumer experience.

What is Visual Cognitive Loading?

MIT-Object-Rec_0-Visual Congnition 2

How the brain recognizes objects – MIT Neuroscientists find evidence that the brain’s inferotemporal cortex can identify objects.  Visual induce human response using the right visuals increase attraction and attention. Photo: MIT

A single image is very hard to convey a video story with a single image. Yes, an image is worth a 1000 words but some people need more information to get excited. Video is a linear body of work that tells a story. Humans are motivated by emotion, intrigue and actions. Senses of sight and motion create a visual story that can be a turn on or turn off. Finding the right turn on images that tells a story is golden. Identifying what will draw them into a video is priceless.

The human visual cortex is connected to your eyes via the optic nerve; it’s like a super computer. Your ability to detect faces and objects at lightning speed is also how fast someone can get turned off to your video. Digital expectations are high in the age of digital natives. For this very reason, the right visual impression is required to get a video to stick, i.e. “sticky videos”. If you’re video isn’t sticky you will loose massive numbers of viewers and be effectively ignored just like “Banner Blindness”. The more visual information shown to a person the higher the probability of inducing an emotional response. Cognitive loading thereby gives them more information about what’s in the video.  If you’re going to increase viewability you have to increase cognitive loading. It’s all about whether the content is worthy of their time.

Why Deep Learning

Deep Learning layers of object recognition. Understanding whats in the images is as valuable as the meta data and title.

Deep Learning layers of object recognition. Understanding whats in the images is as valuable as the meta data and title. Photo: VICOS

The ability to identify what images and why are a big deal over the previous method of “plug a pray”. Systems now can recognize what’s in the image and linking that information back in real time with consumer behavior creates a very powerful leaning environment for video. Its now possible to create a hierarchical shape vocabulary for multi-class object representation further expanding a meaningful data layer.

In our previous post How Deep Learning Powers Video SEO we describe the elements behind deep learning in video and the power of object recognition. This same power can be applied to video selection and managing visual in real time. Both image rotation and full animation (clips) provides maximum visual cognitive loading.

The KRAKEN Hypothesis

Quality video and actuate measurement are paramount when optimizing video. Many ask, Why are KRAKEN images better? The reality is they are because using deep learning to select the right starting images increases the probability of nailing the right images that consumers will want to engage with. Over time, the system gets smarter and optimizes faster. A real time active feedback mechanism is created continuously adjusting and sending information back into the algorithm to improve over time.

Because KRAKEN consists of consumer curated actions, proactive video image selection is made possible.  We make the assertion that optimized thumbnails result in more engaged video watchers as proven by the increase in video plays. KRAKEN drives viewability and enable publishers move premium O&O rates as a result.

Viewability or go home

After the Facebook blunder or “miss calculating video plays” and other measurement stumbles major brands have taken notice …. if you want to believe this was just a “mistake.”  A 3 second play in AUTO PLAY isn’t a play in a feed environment when audio is off according to Rob Norman of Group M. The big challenge is there really isn’t a clear standard, just advice on handling viewability from the IAB. However, the big media buyers like Group M are demanding more and requiring half the video plays have a click to play to meet their viewability standard. This is wake up call for video publishers to get very serious about viewability and advertiser to create better content. All agree viewability is a top KPI when judging a campaigns effectiveness. 2017 is going to be an exciting year to watch how advertisers and publishers work together to increase video viewability. See The state of video Ad viewability in 5 charts as the conversation heats up.